文章编号:0253-2239(2002)01-0050-04

新型 Nd³⁺:Ca₄GdO(BO₃), 自倍频晶体 Cr⁴⁺:YAG 被动调 *Q* 激光特性研究*

赵圣之¹⁾²⁾ 王继扬¹⁾ 郑加安²⁾ 陈 磊²⁾ 张行愚²⁾ 王青圃²⁾ 张其第²⁾ 张树军¹⁾ 张少军¹⁾ 孙连科¹⁾ 陈焕矗¹⁾ (^{1),山东大学晶体材料国家重点实验室,济南 250100} 2),山东大学光学系,济南 250100

摘要: 采用氙灯抽运自倍频晶体 $Nd^{3+}: Ca_4 GdO(BO_3)_{c}$ (简称 Nd: GdCOB), $Cr^{4+}: YAG$ 被动调 Q,实现了 Nd: GdCOB 晶体被动调 Q 激光运转 测量了饱和吸收体 $Cr^{4+}: YAG$ 不同小信号透过率下绿激光单脉冲的输出能量、脉 冲宽度、重复率 给出了描述 Nd: GdCOB 晶体调 Q 工作原理的耦合波方程组 数值求解了该方程组 ,所得的理论结 果与实验值相符合。

关键词: Nd: GdCOB 晶体; Cr^{4+} : YAG 被动调 Q; 数值解 中图分类号: TN248.1 文献标识码: A

1 引 言

最近,一种新型的硼酸盐类自倍频晶体 Nd³⁺:Ca₄GdQ(BO₃)(简称 Nd:GdCOB)受到了人 们的极大关注^[1-5]。与常用的自倍频晶体 NYAB 相比,Nd:GdCOB 晶体有着如下的显著优点:对 0.53 μm绿激光的自吸收较小(只有 NYAB 晶体自 吸收的 50%),生长周期非常短,而且能得到大尺寸 的优质单晶等。因此,这种晶体被认为是一种非常 理想并有广泛应用前景的自倍频晶体。

Nd: GdCOB 晶体为单斜双轴晶系,目前,文献 报道的相位匹配方向有两个,一是 $\theta = 90^{\circ}, \varphi = 46^{c[1-3]}$;另一个是 $\theta = 66.8^{\circ}, \varphi = 132.6^{c[4,5]}$ 。通过 采用钛宝石激光、激光二极管、染料激光作抽运 源^[3,5,6],已经获得了Nd: GdCOB晶体0.53 μ m绿激 光的自由运转;利用腔内放置声光调 *Q* 器件,已经 获得了 Nd: GdCOB 晶体0.53 μ m 绿激光的主动调 *Q* 运转。

本文采用氙灯抽运自倍频晶体 Nd: GdCOB, Cr⁴⁺:YAG 被动调 Q,实现了 Nd: GdCOB 晶体调 Q 的激光运转,测量了饱和吸收体 Cr⁴⁺:YAG 不同小

E-mail:shengzhi-zhao@yahoo.com.cn 收稿日期 2000-10-23;收到修改稿日期 2000-12-21 信号透过率下绿激光单脉冲的输出能量、脉冲宽度、 重复率 给出了描述 Nd: GdCOB 晶体调 Q 工作原 理的耦合波方程组 ,数值求解该方程组所得的理论 结果与实验值相符合。

2 实 验

2.1 实验装置

在实验过程中,两个反射镜 R_1 和 R_2 构成长为 38 cm 的平面-平面腔, R_1 腔镜对基频光 1.06 μ m 和倍频光 0.53 μ m 高反射, R_2 腔镜为输出镜, 对基 频光 1.06 μ m 高反射, 对倍频光 0.53 μ m 高透射。 Nd: GdCOB 晶体采用 I 型相位匹配(即 $\theta = 66.8^{\circ}$, $\varphi = 132.6^{\circ}$), 尺寸为 ϕ 3 mm × 20 mm, 采用尺寸为 ϕ 4 mm × 30 mm的氙灯抽运, 单椭圆聚光腔。作为 被动调 Q的 Cr^{4+} : YAG 片放在靠近 R_1 腔镜的地 方。用 LPE-1B 型能量计测量 0.53 μ m 绿激光的能 量,用 TDS620B 型存储示波器测量脉冲的宽度和重 复率。

2.2 实验结果

调节抽运电压使输出的绿激光在存储示波器中 只有单个脉冲 此时 测量其脉冲宽度和脉冲能量。

图 1 是 Cr^{4+} : YAG 小信号透过率 $T_0 = 0.87$ 时 示波器绿激光的脉冲形状。

图 2 和图 3 是单脉冲能量和脉冲宽度随 Cr⁴⁺:

^{*} 高等学校重点实验室访问学者基金、教育部博士点基金 和山东省自然科学基金资助课题。

YAG 小信号透过率 T_0 的变化情况 ,其圆点是实验 值。

Fig. 1 Oscilloscope pulse shape of green laser when $T_0 = 0.87$

Fig. 2 Single pulse energy versus T_0

Fig. 3 Pulse width versus T_0

实验结果表明 随 Cr^{4+} : YAG 小信号透过率 T_0 的减少 绿激光的单脉冲能量增大而脉冲宽度减小。 当 $T_0 = 0.87$ 时,脉冲宽度为95 ns,单脉冲能量为 2.5 mJ 相应于功率密度为0.3 MW/cm²。

随着抽运电压的增加,在一次抽运时间内,就会 出现多个脉冲,其脉冲重复率可由脉冲间隔计算出 来。图4给出了不同 T_0 下脉冲重复率随抽运能量 的变化,其圆点是实验值。图4表明,脉冲重复率随 抽运能量的增大而增加,这一实验结果与文献7 顶 报道相同。

Fig. 4 Pulse repeptiion rate versus pump energy for different T_0

3 理论估算和讨论

根据速率方程理论和倍频理论,可以导出 Nd:GdCOB自倍频晶体、Cr⁴⁺:YAG 被动调 Q 时激 光器的工作原理方程组^[7]:

$$\frac{\mathrm{d}I_1}{\mathrm{d}t} = \frac{I_1}{t_r} [2\sigma nl - 2\sigma_{\mathrm{g}} n_{\mathrm{a}} d - 2\sigma_{\mathrm{e}} d(n_{\mathrm{a0}} - n_{\mathrm{a}}) - 2lBd_{\mathrm{eff}} \sqrt{I_2} - 2\alpha_1 l - \delta_1], \qquad (1)$$

$$\frac{\mathrm{d}I_2}{\mathrm{d}t} = \left(\frac{I_1}{t_r}\right) 2lBd_{\mathrm{eff}} \sqrt{I_2} -$$

$$\frac{I_2}{t_r} (2\alpha'_1 l + 2\alpha_2 d + \delta_2), \qquad (2)$$

$$\frac{\mathrm{d}n}{\mathrm{d}t} = R_{\mathrm{p}} - \frac{n}{\tau} - \frac{4\sigma n I_{\mathrm{l}}}{h\gamma} , \qquad (3)$$

$$\frac{\mathrm{d}n_{\mathrm{a}}}{\mathrm{d}t} = \frac{(n_{\mathrm{a}0} - n_{\mathrm{a}})}{\tau_{\mathrm{a}}} - \frac{4\sigma_{\mathrm{g}}n_{\mathrm{a}}I_{\mathrm{l}}}{h\gamma} , \qquad (4)$$

式中 I_1 、 I_2 为基频波和倍频波的光强 I_n 为反转粒 子数密度 I_n 为 Cr^{4+} : YAG 饱和吸收体基态原子数 密度 I_σ 为激活介质的受激发射截面 I_r 为基频光和 倍频光在腔内往返一周的时间 I_r

$$e_r = \frac{2n_1l + 2n_2d + 2(L - l - d)}{c}$$

t

式中 , n_1 为激活介质的折射率 , n_2 为Cr⁴⁺ : YAG 的折 射率 ,l 为 激 活 介 质 的 长 度 ,L 为 腔 长 ,d 为 Cr⁴⁺ : YAG 片 的 厚度 , $T_0 = \exp\{(-\sigma_g n_{a0} d), \sigma_g$ 为 Cr⁴⁺ : YAG 基态的吸收截面 , n_{a0} 为 n_a 的起始值 σ_e 为Cr⁴⁺ : YAG 受激态的吸收截面 , τ 为激活介质的辐 射寿命 , τ_a 为Cr⁴⁺ : YAG 基态饱和恢复时间 , R_p 为抽 运速率 α_1 、 α'_1 分别为激活介质对基频波和倍频波的 吸收系数 , α_2 为Cr⁴⁺ : YAG 对倍频波的吸收系数 , δ_1 、 δ_2 为基频波和倍频波的其他损耗 , $h\gamma$ 为光子的能量 , c 为真空中的光速 ,B 为一个常数 ,

$$B = \frac{16\pi^2 (2\pi/cn_1)^{1/2}}{cn_1}$$

根据对一般调 Q 过程的处理⁷¹ 在 Q 脉冲形成 这段很短的时间(纳秒至几十纳秒)内(3)式中可 略去 R_p 和(n/τ) τ 为几十至几百微秒),从而可简 化为:

$$\frac{\mathrm{d}n}{\mathrm{d}t} = -\frac{4\sigma nI_1}{h\gamma}.$$
 (5.2)

同理可知,对慢饱和恢复吸收体 Cr^{4+} : YAG(τ_a 为 3.2 μ s),在 *Q* 脉冲形成期间,可略去(4)式中($n_{a0} - n_a/\tau_a$)项,简化为:

$$\frac{\mathrm{d}n_{a}}{\mathrm{d}t} = -\frac{4\sigma_{g}n_{a}I_{1}}{h\gamma}.$$
 (6)

利用计算机数值求解联立方程(1)式、(2)式、(5)式、 (6)式,可以得出 Nd:GdCOB 晶体 Cr⁴⁺:YAG 被动 调 Q 绿激光单脉冲的输出特性。表 1 给出了方程中 的有关参数。图 5 给出了 Cr⁴⁺:YAG 小信号透过率 $T_0 = 0.87$ 时计算的绿激光的脉冲形状,其峰值功率 为 0.36 MW/cm²,脉冲宽度为 93.5 ns.相应于单脉 冲能量 2.76 mJ,这与实验值脉冲宽度 95 ns、单脉 冲能量 2.5 mJ 非常接近。

Table 1. Related parameters in equations (1)(2),

(5)	and	(6))
-----	-----	-----	---

n(t = 0)	$(2\sigma_{g}n_{a0}d + 2\alpha_{1}l + \delta_{1}l)/2\sigma l$
σ	$2.0 \times 10^{-20} \text{ cm}^2$
$\sigma_{ m g}$	$4.3 \times 10^{-18} \text{ cm}^2$
$\sigma_{ m e}$	$8.2 \times 10^{-19} \text{ cm}^2$
n_{a0}	$2.0 \times 10^{17} \text{ cm}^{-3}$
$d_{ m eff}$	2.75×10^{-9} esu
n_1	1.72
n_2	1.81
α_1	0.15 cm^{-1}
α'_1	0.18 cm^{-1}
α2	1.0 cm^{-1}
δ_1	0.15
δ_2	0.22

Fig. 5 Calculated pulse shape when $T_0 = 0.87$

图 2 和图 3 中的实线为计算的绿激光的单脉冲 能量和脉冲宽度随 Cr^{4+} : YAG 小信号透过率 T_0 的 变化。图中表明 理论计算与实验结果基本相符。

数值求解(1)式~(4)式可以得出在一次抽运时 间内会有多个脉冲,由脉冲间隔可以获得脉冲的重 复率。图4中的实线给出了在不同的 Cr^{4+} :YAG小 信号透过率 T_0 下脉冲的重复率随抽运能量的变化, 抽运能量从 10 J 变化到 13.5 J 时,抽运速率 R_p 的 值从 2.19×10²³ s⁻¹到 2.8×10²³ s⁻¹。图 4 表明理 论结果和实验值也基本相符。

结论 采用氙灯抽运自倍频晶体 Nd: GdCOB,实现 了 Nd: GdCOB 晶体0.53 μm 绿激光 Cr⁴⁺: YAG 被 动调 Q 运转。利用计算机数值求解耦合波方程组, 所得的理论结果与实验值基本相符。实验结果表 明,Nd: GdCOB 晶体是一种优良的新型的自倍频晶 体,其易生长、易得到大尺寸的单晶和对绿激光比较 小的自吸收表明它是一种非常有应用前景的非线性 光学晶体。这种类型的激光器将有广泛的应用前 景。

参考文献

- [1] Mougel F, Aka G, Kahn-Harari A et al.. Infrared laser performance and self-frequency doubling of Nd³⁺: Ga₄ GdO (BO₃) (Nd: GdCOB). Opt. Mater., 1997, 8(3):161~ 173
- [2] Vivien D, Mougel F, Aka G et al.. Neodymium-activated $Ca_4 GdB_3 O_{10}$ (Nd : GdCOB): A multifunctional material exhibiting both laser and nonliear optical properties. Laser Phys., 1998, **8**(3):759 ~ 763
- [3] Mougel F, Augé F, Aka G et al.. New green selffrequency-doubling diode-pumped Nd : Ga₄ GdO (BO₃)₃ laser. Appl. Phys. (B), 1998, 67(5) 533 ~ 535
- [4] Zhang S, Cheng Z, Han J et al.. Growth and investigation of efficient self-frequency-doubling Nd_x: Gd_{1-x} Ga₄ O(BO₃)₃ crystal. J. Crystal Growth, 1999, 206(3):197 ~ 202
- [5] Wang C, Chow Y T, Gambling W A et al.. Efficient selffrequency doubling of Nd:GdCOB crystal by type-I phase matching out of its principle planes. Opt. Commun., 2000, 174(1~3):471~474
- [6] Hou Xueyuan, Sun Yuming, Li Yufei et al.. Laser characteristics of new self-frequency doubling crystal Nd³⁺: Ga₄ GdO(BO₃)₃. Opt. & Laser Technol., 2000, **32**(2): 135~138
- [7] Zhao S, Zhang X, Wang Q et al. Passively Q-switched self-frequency doubling Nd_x Y_{1-x} Al₃ (BO₃), laser with Cr⁴⁺: YAG saturable absorber. Opt. & Laser Technol., 1998, 30(4) 239 ~ 242

Passively *Q*-Switched Self-Frequency Doubling Nd^{3+} : Ca₄GdO(BO₃)₃ Laser with Cr⁴⁺ : YAG Saturable Absorber

Zhao Shengzhi¹⁾²⁾ Wang Jiyang¹⁾ Zheng Jia'an²⁾ Chen Lei²⁾ Zhang Xingyu²⁾ Wang Qingpu²⁾ Zhang Qidi²⁾ Zhang Shujun¹⁾ Zhang Shaojun¹⁾ Sun Lianke¹⁾ Chen Huanchu¹⁾

(1), State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100)

(2), Optics Department, Shandong University, Jinan 250100

(Received 23 October 2000; revised 21 December 2000)

Abstract: Nd^{3+} : $Ca_4 GdO(BO_3)_3$, known as Nd: GdCOB, is a new self-frequency doubling laser crystal. Using Cr^{4+} : YAG as passive *Q*-switch, the *Q*-switched laser running at 0.53 µm with the Nd: GdCOB crystal is realized. The pulse width, single pulse energy and repetition rate under different small-signal transmission of Cr^{4+} : YAG and different pump conditions are measured and the numerical solutions of the coupling wave rate equations agree with the experimental results. **Key words**: Nd: GdCOB crysal; passive *Q*-switch; numerical solution